Quantcast
Channel: Latest Results
Viewing all articles
Browse latest Browse all 1172

Preparation and catalytic activities of CuFe 2 O 4 nanoparticles assembled with graphene oxide for RDX thermal decomposition

$
0
0

Abstract

A graphene oxide-based nano-metal composite oxide CuFe2O4/GO was successfully prepared by a versatile self-assembly approach. Structure and morphological characterization of CuFe2O4/GO nanocomposite were studied in detail by a series of characterization techniques including XRD, FT-IR, XPS, BET, SEM, and TEM. The results revealed that the self-assembly process did not destroy the composition and morphology of the spinel-structured CuFe2O4 particle, and the transparent GO sheets with wrinkled and rough texture are tightly coated on the surface of CuFe2O4 nanoparticles like a layer of thin gauze clothing. The particle size of CuFe2O4 is about 200 nm. Catalytic activity of as-prepared CuFe2O4/GO nanocomposite on the thermal decomposition of cyclotrimethylene trinitramine (RDX) was investigated via differential scanning calorimetry (DSC). The experimental results show that the CuFe2O4/GO nanocomposite has much higher catalytic activity than single CuFe2O4 nanoparticles and GO. Thermal decomposition temperature and apparent activation energy of RDX were reduced from 241.27 to 220.34 °C and from 172.6 to 142.56 kJ mol−1, respectively. The improved performance could be attributed to the “positive synergistic effect” between CuFe2O4 nanoparticles and GO.


Viewing all articles
Browse latest Browse all 1172

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>