Abstract
A g-C3N4 coated and titanium cooperated with NH2-UiO-66 prepared via a post-synthetic exchange method showed enhanced photocatalytic performance for hydrogen generation under visible light. The structure of NH2-UiO-66 was not destroyed and the optical performance of MOF composite was significantly improved than NH2-UiO-66. Based on the TEOA-ErB system and Pt cocatalyst, the highest H2 production efficiency of 0.1 g-C3N4/NH2-UiO-66(0.1Ti) could amount to 43.5 mmol h−1 g−1, which is about 2.6 times higher compared to parent NH2-UiO-66. These findings suggest that the two modification methods could effectively inhibit the recombination of electron–hole pairs and improve the photocatalytic performance of MOF.